Efectividad en la creación de anticuerpos neutralizantes de Espiga-S1 en pacientes vacunados contra Síndrome Respiratorio Agudo Severo Coronavirus 2 (SARS-CoV-2)

  • Quimis Merchán Roddy Wladimir
Palabras clave: Tecnología; comunicación; información; transformación; educación

Resumen

Las vacunas son herramientas críticas para controlar la pandemia de la enfermedad por coronavirus 2019 (COVID-19). Sin embargo, la aparición de variantes del síndrome respiratorio agudo severo coronavirus 2 (SARS-CoV-2) puede amenazar el impacto global de las campañas de vacunación masiva. La presente investigación tuvo como objetivo analizar evidencias científicas sobre la efectividad en la generación de anticuerpos neutralizantes de Spiga-S1 en pacientes vacunados contra SARS-CoV-2. Se aplicó una metodología de diseño documental, de tipo descriptivo y exploratorio y de alcance explicativo. Se realizó una búsqueda de artículos científicos en las bases de datos PubMed, SciELO, Elsevier, Redalyc, Web of Science y Cochrane Library, publicados entre los años 2018-2022. Se seleccionaron 124 artículos bajo criterios de inclusión y exclusión. Los hallazgos evidencian que la generación de anticuerpos neutralizantes de Espiga S1 ocurre dentro de las primeras dos semanas post-vacunación, independientemente del tipo vacuna. Los pacientes con patologías subyacentes o mal controladas son causa de inhibición en la generación de una respuesta humoral efectiva. La evidencia sobre el intervalo entre dosis es escasa y la disponibilidad de datos varía según la vacuna considerada. Las vacunas de ARNm y la inactivada mostraron una eficacia contra SARS-CoV-2 en más del 50% en estudios de fase III. La mayoría de las investigaciones coinciden en que son alternativas seguras y eficaces para prevenir enfermedad grave, hospitalizaciones y muertes frente a todas las variantes de preocupación. Quedan aspectos por indagar sobre la dosis de refuerzo, la duración de la inmunidad y la vacunación heteróloga, requiriéndose investigaciones que impliquen seguimiento en la respuesta inmunitaria según los factores de riesgo y el entorno epidemiológico local.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Quimis Merchán Roddy Wladimir

Instituto de Postgrado. Maestría en Ciencias de Laboratorio Clínico, Facultad Ciencias de Laboratorio Clínico, Universidad Estatal del Sur de Manabí, Ecuador.

Citas

1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19(3):141-154. doi: 10.1038/s41579-020-00459-7. Erratum in: Nat Rev Microbiol. 2022 May;20(5):315. PMID: 33024307; PMCID: PMC7537588.
2. Sun L, Shen L, Fan J, Gu F, Hu M, An Y, Zhou Q, Fan H, Bi J. Clinical features of patients with coronavirus disease 2019 from a designated hospital in Beijing, China. J Med Virol. 2020; 92(10):2055-2066. doi: 10.1002/jmv.25966. PMID: 32369208; PMCID: PMC7267635.
3. Johns Hopkins University. Coronavirus Resource Center. 2022. Disponible en: https://coronavirus.jhu.edu/map.html
4. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020; 586(7830):516-527. doi: 10.1038/s41586-020-2798-3. PMID: 32967006.
5. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021; 21(10):626-636. doi: 10.1038/s41577-021-00592-1. PMID: 34373623; PMCID: PMC8351583.
6. Su S, Du L, Jiang S. Learning from the past: development of safe and effective COVID-19 vaccines. Nat Rev Microbiol. 2021; 19(3):211-219. doi: 10.1038/s41579-020-00462-y. PMID: 33067570; PMCID: PMC7566580.
7. Mubarak A, Alturaiki W, Hemida MG. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Infection, Immunological Response, and Vaccine Development. J Immunol Res. 2019; 2019:6491738. doi: 10.1155/2019/6491738. PMID: 31089478; PMCID: PMC6476043.
8. Organización Mundial de la Salud (OMS). Vacunas contra la COVID-19. 2021. Disponible en: https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines.
9. Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva Filipe A, Wojcechowskyj JA, ISARIC4C Investigators; COVID-19 Genomics UK (COG-UK) Consortium, Et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell. 2021; 184(5):1171-1187.e20. doi: 10.1016/j.cell.2021.01.037. PMID: 33621484; PMCID: PMC7843029.
10. Lou F, Li M, Pang Z, Jiang L, Guan L, Tian L, Hu J, Fan J, Fan H. Understanding the Secret of SARS-CoV-2 Variants of Concern/Interest and Immune Escape. Front Immunol. 2021; 12:744242. doi: 10.3389/fimmu.2021.744242. PMID: 34804024; PMCID: PMC8602852.
11. Graham BS. Rapid COVID-19 vaccine development. Science. 2020; 368(6494):945-946. doi: 10.1126/science.abb8923. PMID: 32385100.
12. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, mRNA-1273 Study Group, Et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med. 2020;383(20):1920-1931. doi: 10.1056/NEJMoa2022483. PMID: 32663912; PMCID: PMC7377258.
13. Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; 395(10240):1845-1854. doi: 10.1016/S0140-6736(20)31208-3. PMID: 32450106; PMCID: PMC7255193.
14. Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020 May;19(5):305-306. doi: 10.1038/d41573-020-00073-5. PMID: 32273591.
15. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Sinai Immunology Review Project, Et al. Immunology of COVID-19: Current State of the Science. Immunity. 2020; 52(6):910-941. doi: 10.1016/j.immuni.2020.05.002. PMID: 32505227; PMCID: PMC7200337.
16. Jiang S. Don't rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature. 2020;579(7799):321. doi: 10.1038/d41586-020-00751-9. PMID: 32179860.
17. Callaway E. Coronavirus vaccines: five key questions as trials begin. Nature. 2020; 579(7800):481. doi: 10.1038/d41586-020-00798-8. PMID: 32203367.
18. Estes JD, Wong SW, Brenchley JM. Nonhuman primate models of human viral infections. Nat Rev Immunol. 2018;18(6):390-404. doi: 10.1038/s41577-018-0005-7. PMID: 29556017; PMCID: PMC5970954.
19. Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, Et al. Animal models for COVID-19. Nature. 2020;586(7830):509-515. doi: 10.1038/s41586-020-2787-6. PMID: 32967005; PMCID: PMC8136862.
20. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Oxford COVID Vaccine Trial Group, Et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020; 396(10249):467-478. doi: 10.1016/S0140-6736(20)31604-4. Erratum in: Lancet. 2020; 396(10249):466. Erratum in: Lancet. 2020 Dec 12;396(10266):1884. PMID: 32702298; PMCID: PMC7445431.
21. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589-593. doi: 10.1038/s41586-020-2639-4. Erratum in: Nature. 2021; 590(7844): E26. PMID: 32785213.
22. Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz L, Vormehr M, Et al. Concurrent human antibody and TH1 type T-cell responses elicited by a COVID-19 RNA vaccine. MedRxiv. 2020. https://doi.org/10.1101/2020.07.17.20140533
23. Figueroa Montes LE. Anticuerpos neutralizantes, nuevas pruebas de laboratorio contra el SARS-CoV-2. Acta Med. Peru. 2021; 38(4): 295-304. http://dx.doi.org/10.35663/amp.2021.384.2191
24. Arif Z, Raza Y. AstraZeneca Vaccine: Should we be concerned. J Pak Med Assoc. 2022;72(1):201. doi: 10.47391/JPMA.11-4165. PMID: 35099473.
25. Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, Et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887-897. doi: 10.1016/S0140-6736(20)31866-3. Epub 2020 Sep 4. Erratum in: Lancet. 2021 Jan 9;397(10269):98. PMID: 32896291; PMCID: PMC7471804.
26. Lin SH, Zhao YS, Zhou DX, Zhou FC, Xu F. Coronavirus disease 2019 (COVID-19): cytokine storms, hyper-inflammatory phenotypes, and acute respiratory distress syndrome. Genes Dis. 2020;7(4):520-527. doi: 10.1016/j.gendis.2020.06.009. PMID: 32837983; PMCID: PMC7323676.
27. Schroeder JT, Bieneman AP. The S1 Subunit of the SARS-CoV-2 Spike Protein Activates Human Monocytes to Produce Cytokines Linked to COVID-19: Relevance to Galectin-3. Front Immunol. 2022; 13:831763. doi: 10.3389/fimmu.2022.831763. PMID: 35392091; PMCID: PMC8982143.
28. Briceño-León R. Cultura de rebaño e inmunidad de rebaño. Ciênc. saúde coletiva. 2022. https://doi.org/10.1590/1413-81232022275.01792022
29. Zimmermann P, Curtis N. Factors That Influence the Immune Response to Vaccination. Clin Microbiol Rev. 2019;32(2):e00084-18. doi: 10.1128/CMR.00084-18. PMID: 30867162; PMCID: PMC6431125.
30. Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, Et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA. 2020; 324(10):951-960. doi: 10.1001/jama.2020.15543. PMID: 32789505; PMCID: PMC7426884.
31. Kellam P, Barclay W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J Gen Virol. 2020;101(8):791-797. doi: 10.1099/jgv.0.001439. PMID: 32430094; PMCID: PMC7641391.
32. Urbiztondo L, Borràs E, Mirada G. Vacunas contra el coronavirus [Coronavirus vaccines]. Vacunas. 2020;21(1):69-72. Spanish. doi: 10.1016/j.vacun.2020.04.002. PMID: 32313527; PMCID: PMC7165276.
33. Lozada I, Núñez C. COVID-19: respuesta inmune y perspectivas terapéuticas. Revista Peruana de Medicina Experimental y Salud Pública. 2020; 37(2): 312-319. https://doi.org/10.17843/rpmesp.2020.372.5490
34. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Author Correction: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2021; 12(1):2144. doi: 10.1038/s41467-021-22614-1. Erratum for: Nat Commun. 2020;11(1):1620. PMID: 33795662; PMCID: PMC8016153.
35. Stephenson KE, Le Gars M, Sadoff J, de Groot AM, Heerwegh D, Truyers CEt al. Immunogenicity of the Ad26.COV2.S Vaccine for COVID-19. JAMA. 2021; 325(15):1535-1544. doi: 10.1001/jama.2021.3645. PMID: 33704352; PMCID: PMC7953339.
36. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Subbarao K, Kent SJ, Triccas JA, Davenport MP. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205-1211. doi: 10.1038/s41591-021-01377-8. PMID: 34002089.
37. Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol. 2021; 21(6):382-393. doi: 10.1038/s41577-021-00542-x. PMID: 33875867; PMCID: PMC8054133.
38. Rodríguez A. Una nueva esperanza: las vacunas contra el COVID-19. Boletín sobre COVID-19, UNAM. 2021; 2(14):7-11. Disponible en: https://dsp.facmed.unam.mx/wp-content/uploads/2022/03/COVID-19-No.14-04-Una-nueva-esperanza-las-vacunas-contra-el-COVID19.pdf
39. Ojeda DS, Gonzalez Lopez Ledesma MM, Pallarés HM, Costa Navarro GS, Sanchez L, Perazzi B, Et al. Emergency response for evaluating SARS-CoV-2 immune status, seroprevalence and convalescent plasma in Argentina. PLoS Pathog. 2021; 17(1):e1009161. doi: 10.1371/journal.ppat.1009161. PMID: 33444413; PMCID: PMC7808630.
40. Rovere P, Laurelli A, Díaz A, Dabusti G, Valdez P. Seroprevalencia de anticuerpos anti S1 SARS-COV-2 en trabajadores vacunados con Sputnik V en un hospital público de la ciudad de Buenos Aires. Medicina. 2021; 81(6): 895-901.
41. Figueroa L. Anticuerpos neutralizantes, nuevas pruebas de laboratorio contra el SARS-CoV-2. Acta Med Peru. 2021; 38(4): 295-304. doi: https://doi. org/10.35663/amp.2021.384.2191
42. Pareja Cruz A, De León Delgado J, Navarrete Mejía P, Luque Espino J, Gonzáles Moscoso J. Detección de anticuerpos neutralizantes en profesionales de la salud vacunados contra el SARS-CoV-2. Horiz. Med. 2021; 21(3): e1543. http://dx.doi.org/10.24265/horizmed.2021.v21n3.02
43. Torres C, Reyes M, Duarte E, Sierra M, Frías M, Acosta G. Vaccines Against COVID-19: A Review. Vaccines. MDPI. 2022; 10(3):1-19. https://doi.org/10.3390/vaccines10030414
44. Limachi Choque J, Verduguez-Orellana A. Anticuerpos Anti SARS-CoV-2, Post-vacunación en Cochabamba, Bolivia. Gaceta Médica Boliviana. 2022; 45(1): 29-35. https://doi.org/10.47993/gmb.v45i1.382
45. Batra M, Tian R, Zhang C, Clarence E, Sacher CS, Miranda JN, Et al. Role of IgG against N-protein of SARS-CoV2 in COVID19 clinical outcomes. Sci Rep. 2021;11(1):3455. doi: 10.1038/s41598-021-83108-0. PMID: 33568776; PMCID: PMC7875990.
46. Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 2020 Dec;588(7839):682-687. doi: 10.1038/s41586-020-2852-1. Epub 2020 Oct 12. PMID: 33045718; PMCID: PMC8092461.
47. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058. Erratum in: Cell. 2020 Dec 10;183(6):1735. PMID: 32155444; PMCID: PMC7102599.
48. Meira C, Silva D, Santos I, Barreto B, Rocha V, Santos E, Dos Reis B, Et al. Diagnostic Performance of Three ELISAs for Detection of Antibodies against SARS-CoV-2 in Human Samples. ScientificWorldJournal. 2022; 2022:7754329. doi: 10.1155/2022/7754329. PMID: 36017468; PMCID: PMC9398874.
49. Soto A, Charca-Rodríguez F, Pareja-Medina M, Fernandez-Navarro M, Altamirano-Cáceres K, Sierra Chávez E, Et al. Evaluación de la respuesta humoral inducida por la vacuna BBIBP-CorV mediante la determinación de anticuerpos neutralizantes en personal sanitario peruano. Rev Perú Med Exp Salud Pública. 2021; 38(4): 493-500. http://dx.doi.org/10.17843/rpmesp.2021.384.9244.
50. Muruato AE, Fontes-Garfias CR, Ren P, Garcia-Blanco MA, Menachery VD, Xie X, Shi PY. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nat Commun. 2020;11(1):4059. doi: 10.1038/s41467-020-17892-0. Erratum in: Nat Commun. 2021;12(1):4000. PMID: 32792628; PMCID: PMC7426916.
51. Harvala H, Robb ML, Watkins N, Ijaz S, Dicks S, Patel M, Supasa P, Et al. Convalescent plasma therapy for the treatment of patients with COVID-19: Assessment of methods available for antibody detection and their correlation with neutralising antibody levels. Transfus Med. 2021; 31(3):167-175. doi: 10.1111/tme.12746. PMID: 33333627; PMCID: PMC8246874.
52. Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg Infect Dis. 2020;26(7):1478-1488. doi: 10.3201/eid2607.200841. PMID: 32267220; PMCID: PMC7323511.
53. Arandia-Guzmán J, Antezana-Llaveta G. SARS-CoV-2: estructura, replicación y mecanismos fisiopatológicos relacionados con COVID-19. Gac Med Bol. 2020; 43(2):170-178. Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1012-29662020000200009&lng=es.
54. Schachar RA, Schachar IH. A SARS-CoV-2 mRNA Vaccine - Preliminary Report. N Engl J Med. 2020;383(12):1190-1191. doi: 10.1056/NEJMc2026616. PMID: 32813940.
55. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 2020; 383: 2603-15. doi:10.1056/NEJMoa2034577
56. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2021;396(10267):1979-1993. doi: 10.1016/S0140-6736(20)32466-1
57. Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med. 2020;383(25):2439-50. doi: 10.1056/NEJMoa2027906.
58. Dillner J, Elfström KM, Blomqvist J, Eklund C, Lagheden C, Nordqvist-Kleppe S, Et al. Antibodies to SARS-CoV-2 and risk of past or future sick leave. Sci Rep. 2021;11(1):5160
59. Long Q-X, Liu B-Z, Deng H-J, Wu G-C, Deng K, Chen Y-K, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26(6):845-848. doi: 10.1038/s41591-020-0897-1.
60. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomized, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21(1):39-51. doi: 10.1016/S1473-3099(20)30831-8.
61. Prévost J, Gasser R, Beaudoin-Bussières G, Richard J, Duerr R, Laumaea A, et al. Cross-Sectional Evaluation of Humoral Responses against SARS-CoV-2 Spike. Cell Rep Med. 2020;1(7):100126. doi: 10.1016/j.xcrm.2020.100126.
62. Chu L, McPhee R, Huang W, Bennett H, Pajon R, Nestorova B, Leav B; mRNA-1273 Study Group. A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine. 2021;39(20):2791-2799. doi: 10.1016/j.vaccine.2021.02.007. PMID: 33707061; PMCID: PMC7871769.
63. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, COVE Study Group, Et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 4;384(5):403-416. doi: 10.1056/NEJMoa2035389. PMID: 33378609; PMCID: PMC7787219.
64. Haynes BF. A New Vaccine to Battle Covid-19. N Engl J Med. 2021;384(5):470-471. doi: 10.1056/NEJMe2035557. PMID: 33378607; PMCID: PMC7787216.
65. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, mRNA-1273 Study Group, Et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med. 2020;383(25):2427-2438. doi: 10.1056/NEJMoa2028436. PMID: 32991794; PMCID: PMC7556339.
66. Rojas-Pérez-Ezquerra P, Crespo Quirós J, Tornero Molina P, Baeza Ochoa de Ocáriz ML, Zubeldia Ortuño JM. Safety of New mRNA Vaccines Against COVID-19 in Severely Allergic Patients. J Investig Allergol Clin Immunol. 2021;31(2):180-181. doi: 10.18176/jiaci.0683. PMID: 33648905.
67. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Oxford COVID Vaccine Trial Group, Et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021; 397(10269):99-111. doi: 10.1016/S0140-6736(20)32661-1. Erratum in: Lancet. 2021; 397(10269):98. PMID: 33306989; PMCID: PMC7723445.
68. Onyeaka H, Al-Sharify ZT, Ghadhban MY, Al-Najjar SZ. A review on the advancements in the development of vaccines to combat coronavirus disease 2019. Clin Exp Vaccine Res. 2021;10(1):6-12. doi: 10.7774/cevr.2021.10.1.6. PMID: 33628749; PMCID: PMC7892947.
69. Knoll MD, Chizoba W. Oxford–AstraZeneca COVID-19 vaccine efficacy. The Lancet. 2021; 397.10269: 72-74.
70. Olliaro P, Torreele E, Vaillant M. COVID-19 vaccine efficacy and effectiveness-the elephant (not) in the room. Lancet Microbe. 2021;2(7):e279-e280. doi: 10.1016/S2666-5247(21)00069-0. Erratum in: Lancet Microbe. 2021;2(7):e288. PMID: 33899038; PMCID: PMC8057721.
71. Kolber MR, Fritsch P, Price M, Singer AG, Young J, Dugré N, Bradley S, Nickonchuk T. COVID-19 vaccine fast facts. Can Fam Physician. 2021;67(3):185-186. doi: 10.46747/cfp.6703185. PMID: 33727379; PMCID: PMC7963012.
72. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, ENSEMBLE Study Group, Et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021;384(23):2187-2201. doi: 10.1056/NEJMoa2101544. PMID: 33882225; PMCID: PMC8220996.
73. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020; 323(16):1582-1589. doi: 10.1001/jama.2020.4783. PMID: 32219428; PMCID: PMC7101507.
74. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Et al. Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019. Clin Infect Dis. 2020;71(16):2027-2034. doi: 10.1093/cid/ciaa344. PMID: 32221519; PMCID: PMC7184337.
75. Abad-García MF. El plagio y las revistas depredadoras como amenaza a la integridad científica. Anales de Pediatría. 2019; Volume 90 (1):57.e1-57.e8J2021; 57:21-34. Doi: https://doi.org/10.1016/j.anpedi.2018.11.003.
76. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71. doi: 10.1136/bmj.n71. PMID: 33782057; PMCID: PMC8005924.
77. Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, C4591001 Clinical Trial Group, Et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N Engl J Med. 2021;385(19):1761-1773. doi: 10.1056/NEJMoa2110345. PMID: 34525277; PMCID: PMC8461570.
78. Frenck RW Jr, Klein NP, Kitchin N, Gurtman A, Absalon J, Lockhart S, C4591001 Clinical Trial Group, Et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. N Engl J Med. 2021;385(3):239-250. doi: 10.1056/NEJMoa2107456. PMID: 34043894; PMCID: PMC8174030.
79. El Sahly HM, Baden LR, Essink B, Doblecki-Lewis S, Martin JM, Anderson EJ, Campbell TB, COVE Study Group, Et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N Engl J Med. 2021;385(19):1774-1785. doi: 10.1056/NEJMoa2113017. PMID: 34551225; PMCID: PMC8482810.
80. CureVac, A. G. Curevac final data from phase 2b/3 trial of first-generation Covid-19 vaccine candidate, cvncov, demonstrates protection in age group of 18 to 60. Reference Source. 2021. Disponible en: https://www.curevac.com/en/curevac-final-data-from-phase-2b-3-trial-of-first-generation-covid-19-vaccine-candidate-cvncov-demonstrates-protection-in-age-group-of-18-to-60/
81. Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, Blane B, Et al. COVID-19 Genomics UK consortium; AMPHEUS Project; Oxford COVID-19 Vaccine Trial Group. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 2021;397(10282):1351-1362. doi: 10.1016/S0140-6736(21)00628-0. PMID: 33798499; PMCID: PMC8009612.
82. Islam Sk, Ramiz Debasish Prusty, and Soumen Kanti Manna. Structural basis of fitness of emerging SARS-COV-2 variants and considerations for screening, testing and surveillance strategy to contain their threat. MedRxiv (2021).
83. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, NGS-SA Group; Wits-VIDA COVID Group, Et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021;384(20):1885-1898. doi: 10.1056/NEJMoa2102214. PMID: 33725432; PMCID: PMC7993410.
84. AZD1222 III, U.S. Phase III trial met primary efficacy endpoint in preventing COVID-19 at interim analysis. 2021. Disponible en: https://www.astrazeneca.com/media-centre/press-releases/2021/astrazeneca-us-vaccine-trial-met-primary-endpoint.html
85. Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022;28(2):202-221. doi: 10.1016/j.cmi.2021.10.005. PMID: 34715347; PMCID: PMC8548286.
86. Food and Drug Administration (FDA). Briefing Document Janssen Ad26.COV2.S Vaccine for the Prevention of COVID-19. 2021. Disponible en: https://www.fda.gov/media/146217/download
87. Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, 2019nCoV-501 Study Group, Et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021;384(20):1899-1909. doi: 10.1056/NEJMoa2103055. PMID: 33951374; PMCID: PMC8091623.
88. Novavax COVID-19 Vaccine Demonstrates 89.3% Efficacy in UK Phase 3 Trial. 2021. Disponible en: https://ir.novavax.com/2021-01-28-Novavax-COVID-19-Vaccine-Demonstrates-89-3-Efficacy-in-UK-Phase-3-Trial
89. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, Chadwick DR, Et al. 2019nCoV-302 Study Group. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Engl J Med. 2021 Sep 23;385(13):1172-1183. doi: 10.1056/NEJMoa2107659. Epub 2021 Jun 30. PMID: 34192426; PMCID: PMC8262625.
90. Halperin SA, Ye L, MacKinnon-Cameron D, Smith B, Cahn PE, Ruiz-Palacios GM, Ikram A, Et al. CanSino COVID-19 Global Efficacy Study Group. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet. 2022;399(10321):237-248. doi: 10.1016/S0140-6736(21)02753-7. Erratum in: Lancet. 2022; 399(10321):236. PMID: 34953526; PMCID: PMC8700283.
91. Sinovac Biotech Ltd. Sinovac announces phase III results of Its COVID-19 vaccine-SINOVAC - supply vaccines to eliminate human diseases. 2021. Disponible en http://www.sinovac.com/?optionid=754&auto_id=922
92. Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S, Köse Ş, Et al. CoronaVac Study Group. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet. 2021;398(10296):213-222. doi: 10.1016/S0140-6736(21)01429-X. Erratum in: Lancet. 2022 Jan 29;399(10323):436. PMID: 34246358; PMCID: PMC8266301.
93. Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, Et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. JAMA. 2021; 326(1):35-45. doi: 10.1001/jama.2021.8565. PMID: 34037666; PMCID: PMC8156175.
94. Sharma K, Koirala A, Nicolopoulos K, Chiu C, Wood N, Britton PN. Vaccines for COVID-19: Where do we stand in 2021? Paediatr Respir Rev. 2021; 39:22-31. doi: 10.1016/j.prrv.2021.07.001. PMID: 34362666; PMCID: PMC8274273.
95. Centro de Ingeniería Genética y Biotecnología. Vacuna Abdala. CIGB; 2021. 100% de eficacia ante la enfermedad severa y la muerte en su ensayo fase III. Disponible en: https://www.cigb.edu.cu/product/abdala-cigb-66/
96. Singh H, Dahiya N, Yadav M, Sehrawat N. Emergence of SARS-CoV-2 New Variants and Their Clinical Significance. Can J Infect Dis Med Microbiol. 2022; 2022:7336309. doi: 10.1155/2022/7336309. PMID: 35669528; PMCID: PMC9167142.
97. Padhiar NH, Liu JB, Wang X, Wang XL, Bodnar BH, Khan S, Wang P, Khan AI, Luo JJ, Hu WH, Ho WZ. Comparison of BNT162b2-, mRNA-1273- and Ad26.COV2.S-Elicited IgG and Neutralizing Titers against SARS-CoV-2 and Its Variants. Vaccines (Basel). 2022;10(6):858. doi: 10.3390/vaccines10060858. PMID: 35746466; PMCID: PMC9228110.
98. World Health Organization. Interim recommendations for use of the inactivated COVID-19 vaccine BIBP developed by China National Biotec Group (‎CNBG)‎, Sinopharm. 2021. Disponible en: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE-recommendation-BIBP
99. Schultz-Cherry S, McGargill MA, Thomas PG, Estepp JH, Gaur AH, Allen EK, Allison KJ, Tang L, Webby RJ, Cherry SD, Lin CY, Fabrizio T, Tuomanen EI, Wolf J; SJTRC Investigative Team. Cross-reactive Antibody Response to mRNA SARS-CoV-2 Vaccine After Recent COVID-19-Specific Monoclonal Antibody Therapy. Open Forum Infect Dis. 2021;8(9):ofab420. doi: 10.1093/ofid/ofab420. PMID: 34557558; PMCID: PMC8454518.
100. Park C, Sakong J, Jo S, Kim M, Baek K. Adverse Effects on Work and Daily Life Interference among Healthcare Workers after the First and Second ChAdOx1 and BNT162b2 COVID-19 Vaccine Doses. Vaccines (Basel). 2021;9(8):926. doi: 10.3390/vaccines9080926. PMID: 34452051; PMCID: PMC8402749.
101. Luxi N, Giovanazzi A, Capuano A, Crisafulli S, Cutroneo PM, Fantini MP, Et al. Ilmiovaccino COVID19 collaborating group. COVID-19 Vaccination in Pregnancy, Paediatrics, Immunocompromised Patients, and Persons with History of Allergy or Prior SARS-CoV-2 Infection: Overview of Current Recommendations and Pre- and Post-Marketing Evidence for Vaccine Efficacy and Safety. Drug Saf. 2021;44(12):1247-1269. doi: 10.1007/s40264-021-01131-6. PMID: 34739716; PMCID: PMC8569292.
102. Bozkurt B, Kamat I, Hotez PJ. Myocarditis With COVID-19 mRNA Vaccines. Circulation. 2021; 144(6):471-484. doi: 10.1161/CIRCULATIONAHA.121.056135. PMID: 34281357; PMCID: PMC8340726.
103. Feikin DR, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg Y, Groome MJ, Et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet. 2022;399(10328):924-944. doi: 10.1016/S0140-6736(22)00152-0. Erratum in: Lancet. 2022. PMID: 35202601; PMCID: PMC8863502.
104. Legros V, Denolly S, Vogrig M, Boson B, Siret E, Rigaill J, Pillet S, Et al. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between neutralizing antibodies and COVID-19 severity. Cell Mol Immunol. 2021; 18(2):318-327. doi: 10.1038/s41423-020-00588-2. PMID: 33408342; PMCID: PMC7786875.
105. Chen P, Datta G, Grace Li Y, Chien J, Price K, Chigutsa E, Et al. First-in-Human Study of Bamlanivimab in a Randomized Trial of Hospitalized Patients With COVID-19. Clin Pharmacol Ther. 2021; 110(6):1467-1477. doi: 10.1002/cpt.2405. PMID: 34455583; PMCID: PMC8653186.
106. Drouin O, Hepburn CM, Farrar DS, Baerg K, Chan K, Cyr C, Donner EJ, Et al; Canadian Paediatric Surveillance Program COVID-19 Study Team. Characteristics of children admitted to hospital with acute SARS-CoV-2 infection in Canada in 2020. CMAJ. 2021; 193(38): E1483-E1493. doi: 10.1503/cmaj.210053. PMID: 34580141; PMCID: PMC8486480.
107. Modenese A, Paduano S, Bargellini A, Bellucci R, Marchetti S, Bruno F, Grazioli P, Vivoli R, Gobba F. Neutralizing Anti-SARS-CoV-2 Antibody Titer and Reported Adverse Effects, in a Sample of Italian Nursing Home Personnel after Two Doses of the BNT162b2 Vaccine Administered Four Weeks Apart. Vaccines (Basel). 2021;9(6):652. doi: 10.3390/vaccines9060652. PMID: 34203652; PMCID: PMC8232293.
108. Hillus D, Schwarz T, Tober-Lau P, Vanshylla K, Hastor H, Thibeault C, Et al; EICOV/COVIM Study Group, Klein F, Kurth F, Corman VM, Sander LE. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. Lancet Respir Med. 2021; 9(11):1255-1265. doi: 10.1016/S2213-2600(21)00357-X. PMID: 34391547; PMCID: PMC8360702.
109. Basso P, Negro C, Cegolon L, Larese Filon F. Risk of Vaccine Breakthrough SARS-CoV-2 Infection and Associated Factors in Healthcare Workers of Trieste Teaching Hospitals (North-Eastern Italy). Viruses. 2022;14(2):336. doi: 10.3390/v14020336. PMID: 35215930; PMCID: PMC8875653.
110. Yamamoto K. Adverse effects of COVID-19 vaccines and measures to prevent them. Virol J. 2022;19(1):100. doi: 10.1186/s12985-022-01831-0. PMID: 35659687; PMCID: PMC9167431.
111. Finsterer J. Neurological side effects of SARS-CoV-2 vaccinations. Acta Neurol Scand. 2022; 145(1):5-9. doi: 10.1111/ane.13550. PMID: 34750810; PMCID: PMC8653194.
112. Kaulen LD, Doubrovinskaia S, Mooshage C, Jordan B, Purrucker J, Haubner C, Seliger C, Lorenz HM, Nagel S, Wildemann B, Bendszus M, Wick W, Schönenberger S. Neurological autoimmune diseases following vaccinations against SARS-CoV-2: a case series. Eur J Neurol. 2022;29(2):555-563. doi: 10.1111/ene.15147. Epub 2021 Oct 31. PMID: 34668274; PMCID: PMC8652629.
113. Hippisley-Cox J, Patone M, Mei XW, Saatci D, Dixon S, Khunti K, Zaccardi F, Watkinson P, Shankar-Hari M, Doidge J, Harrison DA, Griffin SJ, Sheikh A, Coupland CAC. Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study. BMJ. 2021; 374:n1931. doi: 10.1136/bmj.n1931. PMID: 34446426; PMCID: PMC8388189.
114. Whiteley WN, Ip S, Cooper JA, Bolton T, Keene S, Walker V, Denholm R, Akbari A, Et al; CVD-COVID-UK consortium. Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: A population-based cohort study of 46 million adults in England. PLoS Med. 2022;19(2):e1003926. doi: 10.1371/journal.pmed.1003926. PMID: 35192597; PMCID: PMC8863280.
115. Accorsi EK, Britton A, Fleming-Dutra KE, Smith ZR, Shang N, Derado G, Et al. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA. 2022; 327(7):639-651. doi: 10.1001/jama.2022.0470. PMID: 35060999; PMCID: PMC8848203.
116. Galmiche S, Luong Nguyen LB, Tartour E, de Lamballerie X, Wittkop L, Loubet P, Launay O. Immunological and clinical efficacy of COVID-19 vaccines in immunocompromised populations: a systematic review. Clin Microbiol Infect. 2022; 28(2):163-177. doi: 10.1016/j.cmi.2021.09.036. PMID: 35020589; PMCID: PMC8595936.
117. Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, Et al. Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines. N Engl J Med. 2022;386(4):340-350. doi: 10.1056/NEJMoa2115481. PMID: 35021002; PMCID: PMC8781262.
118. Menni C, Klaser K, May A, Polidori L, Capdevila J, Louca P, Et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis. 2021; 21(7):939-949. doi: 10.1016/S1473-3099(21)00224-3. PMID: 33930320; PMCID: PMC8078878.
119. Simpson CR, Shi T, Vasileiou E, Katikireddi SV, Kerr S, Moore E, Et al. First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland. Nat Med. 2021;27(7):1290-1297. doi: 10.1038/s41591-021-01408-4. PMID: 34108714; PMCID: PMC8282499.
120. Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, Et al. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N Engl J Med. 2021;385(24):e84. doi: 10.1056/NEJMoa2114583. PMID: 34614326; PMCID: PMC8522797.
121. Regev-Yochay G, Gonen T, Gilboa M, Mandelboim M, Indenbaum V, Amit S, Meltzer L, Et al. Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against Omicron. N Engl J Med. 2022;386(14):1377-1380. doi: 10.1056/NEJMc2202542. PMID: 35297591; PMCID: PMC9006792.
122. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021; 26(1):2002106. doi: 10.2807/1560-7917.ES.2020.26.1.2002106. Erratum in: Euro Surveill. 2021;26(3): PMID: 33413740; PMCID: PMC7791602.
123. Khan A, Zia T, Suleman M, Khan T, Ali SS, Abbasi AA, Mohammad A, Wei DQ. Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. J Cell Physiol. 2021;236(10):7045-7057. doi: 10.1002/jcp.30367. PMID: 33755190; PMCID: PMC8251074.
124. Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, Fera D, Shafer RW. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet. 2021;22(12):757-773. doi: 10.1038/s41576-021-00408-x. PMID: 34535792; PMCID: PMC8447121.
Publicado
2022-11-19
Cómo citar
Quimis Merchán Roddy Wladimir. (2022). Efectividad en la creación de anticuerpos neutralizantes de Espiga-S1 en pacientes vacunados contra Síndrome Respiratorio Agudo Severo Coronavirus 2 (SARS-CoV-2). Revista Científica FIPCAEC (Fomento De La investigación Y publicación científico-técnica multidisciplinaria). ISSN : 2588-090X . Polo De Capacitación, Investigación Y Publicación (POCAIP), 7(4), 642-684. Recuperado a partir de https://fipcaec.com/index.php/fipcaec/article/view/653
Sección
Artículos de Investigación